IPP5 inhibits neurite growth in primary sensory neurons by maintaining TGF-β/Smad signaling.

نویسندگان

  • Qing-Jian Han
  • Nan-Nan Gao
  • Guo-QiangMa
  • Zhen-Ning Zhang
  • Wen-Hui Yu
  • Jing Pan
  • Qiong Wang
  • Xu Zhang
  • Lan Bao
چکیده

During nerve regeneration, neurite growth is regulated by both intrinsic molecules and extracellular factors. Here, we found that inhibitor 5 of protein phosphatase 1 (IPP5), a newly identified inhibitory subunit of protein phosphatase 1 (PP1), inhibited neurite growth in primary sensory neurons as an intrinsic regulator. IPP5 was highly expressed in the primary sensory neurons of rat dorsal root ganglion (DRG) and was downregulated after sciatic nerve axotomy. Knocking down IPP5 with specific shRNA increased the length of the longest neurite, the total neurite length and the number of neurite ends in cultured rat DRG neurons. Mutation of the PP1-docking motif K(8)IQF(11) or the PP1-inhibiting motif at Thr(34) eliminated the IPP5-induced inhibition of neurite growth. Furthermore, biochemical experiments showed that IPP5 interacted with type I transforming growth factor-β receptor (TβRI) and PP1 and enhanced transforming growth factor-β (TGF-β)/Smad signaling in a PP1-dependent manner. Overexpressing IPP5 in DRG neurons aggravated TGF-β-induced inhibition of neurite growth, which was abolished by blocking PP1 or IPP5 binding to PP1. Blockage of TGF-β signaling with the TβRI inhibitor SB431542 or Smad2 shRNA attenuated the IPP5-induced inhibition of neurite growth. Thus, these data indicate that selectively expressed IPP5 inhibits neurite growth by maintaining TGF-β signaling in primary sensory neurons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IPP5 inhibits neurite growth in primary sensory neurons by maintaining TGF-b/Smad signaling

Qing-Jian Han, Nan-Nan Gao, Guo-Qiang Ma, Zhen-Ning Zhang, Wen-Hui Yu, Jing Pan, Qiong Wang, Xu Zhang and Lan Bao* State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological ...

متن کامل

LAT-derived microRNAs in HSV-1 target SMAD3 and SMAD4 in TGF-β/Smad signaling pathway

Background: During its latent infection, HSV-1 produces only a miRNA precursor called LAT, which encodes six distinct miRNAs. Recent studies have suggested that some of these miRNAs could target cellular mRNAs. One of the key cell signaling pathways that can be affected by HSV-1 is the TGF-β/Smad pathway. Herein, we investigated the potential role of the LAT as well as three LAT-derived miRNAs ...

متن کامل

SMAD-Independent Down-Regulation of Caveolin-1 by TGF-β: Effects on Proliferation and Survival of Myofibroblasts

Transforming growth factor-β (TGF-β) mediates growth-inhibitory effects on most target cells via activation of the canonical SMAD signaling pathway. This growth-inhibitory activity may be coupled with cellular differentiation. Our studies demonstrate that TGF-β1 inhibits proliferation of primary, non-transformed human lung fibroblasts in association with the induction of myofibroblast different...

متن کامل

Effects of fibromodulin protein expression on NFkB and TGFβ signaling pathways in liver cancer cells

Introduction: The incidence rate of liver cancer is continuously increasing. Currently, gene therapy is applied to improve various medical issues such as cancer treatment approaches. Correspondingly, fibromodulin involves in many biological and physiological processes through interaction with growth factors and signaling pathway receptors. The aim of this study was to investigate the effects of...

متن کامل

Modulation of IKKβ/NF-κB and TGF-β1/Smad via Fuzheng Huayu recipe involves in prevention of nutritional steatohepatitis and fibrosis in mice

Objective(s):Fuzheng Huayu recipe (FZHY) exerts significant protective effects against liver fibrosis by strengthening the body’s resistance and removing blood stasis. However, the molecular mechanisms through which FZHY affects liver fibrosis are still unclear. In this study, we examined the expression levels of factors involved in the inhibitor κB kinase-β (IKK-β)/nuclear factor-κB (NF-κB) an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 126 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2013